US 2015/0173044 Al

theless, the PDCP may feed a single RL.C and may fill a single
transport block. In some implementations, the use of the
indication may address legacy issues, such as when legacy
networks omit the indication. Moreover, a local area radio
network element may be configured to detect this indication
(e.g., as a bit in the PDCP header) and determine whether the
PDCP PDU is targeted to a processing entity of the first
network (e.g., targeted to its own processing entity, such as
the local area RRC entity) or whether it is targeted to a
processing entity of the second network (e.g., EPS RRC). As
such, the user equipment may determine, when composing
and assembling the message into a PDCP PDU, whether to set
this indication to the value of the selected routing option.

[0052] FIG. 7B depicts an example message, in accordance
with some example implementations. In the example of FIG.
7B, the PDCP header field 799 may have a value of““0”, which
may be defined to indicate legacy compatibility that is to
indicate an EPS RRC message, while a value of “1” may be
defined to indicate that the RRC message is targeted to the
local area network (example.g., to a local area RRC entity). In
some implementations, the value “1” may not be understood
by some legacy networks, although this may not cause con-
fusion in those legacy networks. Any confusion may be mini-
mized, if not avoided, by for example handling of the PDCP
PDU in the local area network node. As such, any RLC PDU
with the flag set to “1”” may be processed inside the local area
network, but it will not transfer to the EPS network. On the
other hand, any PDCP PDU with the flag set to “0” may be
transferred to the EPS network, where it is then legacy com-
patible as being the EPS PDCP PDU with its RFU flag set to
“0” and carrying EPS RRC message.

[0053] Table 1 depicts an example RRC message defini-
tion.
TABLE 1
Message ::= SEQUENCE {
Message DL_ DCCH-MessageType
DL_ DCCH-MessageType ::= CHOICE {
C1
Message_ name {
IE
IE
)
HASH
¥
[0054] Table 2 depicts an example of protocol encapsula-

tion (e.g., an eRRC.message carries a container including a
RRC-message).

TABLE 2

Message ::= SEQUENCE {
Message LTEHi-eMessageType

LTEHi-eMessageType ::= CHOICE {
C1
Message_ name {
eRRC_ Transactionldentfier
elE
elE
elE
DL-DCCH-message {
MessageType
RRC__Transactionldentifier
IE

Jun. 18, 2015

TABLE 2-continued

IE

HASH

eHASH

[0055] Table 3 depicts an alternative approach of a flat
protocol implementation (e.g., eRRC-message and RRC-
message are separated by MessageType and their processes
may be separated by RRC_Transactionldentifier).

TABLE 3

Message ::= SEQUENCE {
Message LTEHi-eMessageType

LTEHi-eMessageType ::= CHOICE {
Cl
Message__name {
eRRC_ Transactionldentifier
elE
elE
elE

eHASH

Message ::= SEQUENCE {
Message DL-DCCH-Message Type

¥
DL-DCCH-MessageType ::= CHOICE {
C1
Message_name {
RRC__Transactionldentifier
IE
IE
)
HASH
¥

[0056] FIG. 8 depicts an example implementation of an
access point 800, which may be implemented at devices 110A
or 110B. The access point may include one or more antennas
820 configured to transmit downlinks and configured to
receive uplinks via the antenna(s) 820. The access point may
further include a plurality of radio interfaces 840 coupled to
the antenna 820. The radio interfaces may correspond to a
plurality of radio access technologies including one or more
of LTE, WLAN, Bluetooth, BT-LE, NFC, radio frequency
identifier (RFID), ultrawideband (UWB), ZigBee, and the
like. The access point may further include at least one pro-
cessor, such as processor 830, for controlling the access point
800 and for accessing and executing program code stored in
memory 835. In some example embodiments, the memory
835 includes code, which when executed by at least one
processor causes one or more of the operations described
herein with respect to an access point (e.g., establishing bear-
ers, establishing RRC entities in the network to communicate
with the user equipment’s RRC entities, generate RRC sig-
naling/messaging, and the like). The radio interface 840 may
further include other components, such as filters, converters
(e.g., digital-to-analog converters and the like), mappers, a
Fast Fourier Transform (FFT) module, and the like, to gener-
ate symbols for a transmission via one or more downlinks and
to receive symbols (e.g., via an uplink).



